Serveur d'exploration sur les maladies des plantes grimpantes

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Transient expression of artificial microRNAs targeting Grapevine fanleaf virus and evidence for RNA silencing in grapevine somatic embryos.

Identifieur interne : 000610 ( Main/Exploration ); précédent : 000609; suivant : 000611

Transient expression of artificial microRNAs targeting Grapevine fanleaf virus and evidence for RNA silencing in grapevine somatic embryos.

Auteurs : Noémie S. Jelly [France] ; Paul Schellenbaum ; Bernard Walter ; Pascale Maillot

Source :

RBID : pubmed:22427113

Descripteurs français

English descriptors

Abstract

Grapevines are affected worldwide by viruses that compromise fruit yield and quality. Grapevine fanleaf virus (GFLV) causes fanleaf degeneration disease, a major threat to grapevine production. Transgenic approaches exploiting the RNA silencing machinery have proven suitable for engineering viral resistance in several crop species. However, the artificial microRNA (amiRNA)-based strategy has not yet been reported in grapevine. We developed two amiRNA precursors (pre-amiRNAs) targeting the coat protein (CP) gene of GFLV and characterised their functionality in grapevine somatic embryos. To create these pre-amiRNAs, natural pre-miR319a of Arabidopsis thaliana was modified by overlapping PCR in order to replace miR319a with two amiRNAs targeting different regions of the CP gene: amiR(CP)-1 or amiR(CP)-2. Transient expression of these two pre-amiRNA constructs was tested in grapevine somatic embryos after co-cultivation with Agrobacterium tumefaciens. Expression of amiR(CP)-1 and amiR(CP)-2 was detected in plant tissues by an endpoint stem-loop RT-PCR as early as 1 day after a 48-h co-cultivation, indicating active processing of pre-amiRNAs by the plant machinery. In parallel, GUS-sensor constructs (G(CP)-1 and G(CP)-2) were obtained by fusing the target sequence of amiR(CP)-1 or amiR(CP)-2 to the 3' terminus of the GUS gene. Co-transformation assays with GUS-sensors and the pre-amiRNA constructs provided evidence for in vivo recognition and cleavage of the 21-nt target sequence of GUS-sensors by the corresponding amiRNA. This is the first report of amiRNA ectopic expression in grapevine. The constructs we developed could be useful for engineering GFLV-resistant grapes in the future.

DOI: 10.1007/s11248-012-9611-5
PubMed: 22427113


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Transient expression of artificial microRNAs targeting Grapevine fanleaf virus and evidence for RNA silencing in grapevine somatic embryos.</title>
<author>
<name sortKey="Jelly, Noemie S" sort="Jelly, Noemie S" uniqKey="Jelly N" first="Noémie S" last="Jelly">Noémie S. Jelly</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Vigne, Biotechnologies et Environnement, Université de Haute-Alsace, 33 rue de Herrlisheim, 68008 Colmar, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Vigne, Biotechnologies et Environnement, Université de Haute-Alsace, 33 rue de Herrlisheim, 68008 Colmar</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Alsace (région administrative)</region>
<settlement type="city">Colmar</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schellenbaum, Paul" sort="Schellenbaum, Paul" uniqKey="Schellenbaum P" first="Paul" last="Schellenbaum">Paul Schellenbaum</name>
</author>
<author>
<name sortKey="Walter, Bernard" sort="Walter, Bernard" uniqKey="Walter B" first="Bernard" last="Walter">Bernard Walter</name>
</author>
<author>
<name sortKey="Maillot, Pascale" sort="Maillot, Pascale" uniqKey="Maillot P" first="Pascale" last="Maillot">Pascale Maillot</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22427113</idno>
<idno type="pmid">22427113</idno>
<idno type="doi">10.1007/s11248-012-9611-5</idno>
<idno type="wicri:Area/Main/Corpus">000646</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000646</idno>
<idno type="wicri:Area/Main/Curation">000646</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000646</idno>
<idno type="wicri:Area/Main/Exploration">000646</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Transient expression of artificial microRNAs targeting Grapevine fanleaf virus and evidence for RNA silencing in grapevine somatic embryos.</title>
<author>
<name sortKey="Jelly, Noemie S" sort="Jelly, Noemie S" uniqKey="Jelly N" first="Noémie S" last="Jelly">Noémie S. Jelly</name>
<affiliation wicri:level="3">
<nlm:affiliation>Laboratoire Vigne, Biotechnologies et Environnement, Université de Haute-Alsace, 33 rue de Herrlisheim, 68008 Colmar, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Laboratoire Vigne, Biotechnologies et Environnement, Université de Haute-Alsace, 33 rue de Herrlisheim, 68008 Colmar</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Grand Est</region>
<region type="old region" nuts="2">Alsace (région administrative)</region>
<settlement type="city">Colmar</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Schellenbaum, Paul" sort="Schellenbaum, Paul" uniqKey="Schellenbaum P" first="Paul" last="Schellenbaum">Paul Schellenbaum</name>
</author>
<author>
<name sortKey="Walter, Bernard" sort="Walter, Bernard" uniqKey="Walter B" first="Bernard" last="Walter">Bernard Walter</name>
</author>
<author>
<name sortKey="Maillot, Pascale" sort="Maillot, Pascale" uniqKey="Maillot P" first="Pascale" last="Maillot">Pascale Maillot</name>
</author>
</analytic>
<series>
<title level="j">Transgenic research</title>
<idno type="eISSN">1573-9368</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Agrobacterium tumefaciens (genetics)</term>
<term>Arabidopsis (genetics)</term>
<term>Gene Transfer Techniques (MeSH)</term>
<term>Genetic Vectors (MeSH)</term>
<term>Glucuronidase (genetics)</term>
<term>Glucuronidase (metabolism)</term>
<term>Green Fluorescent Proteins (metabolism)</term>
<term>MicroRNAs (physiology)</term>
<term>Nepovirus (genetics)</term>
<term>RNA Interference (MeSH)</term>
<term>RNA, Plant (genetics)</term>
<term>RNA, Viral (genetics)</term>
<term>Vitis (embryology)</term>
<term>Vitis (genetics)</term>
<term>Vitis (growth & development)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN des plantes (génétique)</term>
<term>ARN viral (génétique)</term>
<term>Agrobacterium tumefaciens (génétique)</term>
<term>Arabidopsis (génétique)</term>
<term>Glucuronidase (génétique)</term>
<term>Glucuronidase (métabolisme)</term>
<term>Interférence par ARN (MeSH)</term>
<term>Nepovirus (génétique)</term>
<term>Protéines à fluorescence verte (métabolisme)</term>
<term>Techniques de transfert de gènes (MeSH)</term>
<term>Vecteurs génétiques (MeSH)</term>
<term>Vitis (croissance et développement)</term>
<term>Vitis (embryologie)</term>
<term>Vitis (génétique)</term>
<term>microARN (physiologie)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="genetics" xml:lang="en">
<term>Glucuronidase</term>
<term>RNA, Plant</term>
<term>RNA, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="embryologie" xml:lang="fr">
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="embryology" xml:lang="en">
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Agrobacterium tumefaciens</term>
<term>Arabidopsis</term>
<term>Nepovirus</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>ARN des plantes</term>
<term>ARN viral</term>
<term>Agrobacterium tumefaciens</term>
<term>Arabidopsis</term>
<term>Glucuronidase</term>
<term>Nepovirus</term>
<term>Vitis</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glucuronidase</term>
<term>Green Fluorescent Proteins</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Glucuronidase</term>
<term>Protéines à fluorescence verte</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>microARN</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="physiology" xml:lang="en">
<term>MicroRNAs</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Gene Transfer Techniques</term>
<term>Genetic Vectors</term>
<term>RNA Interference</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Interférence par ARN</term>
<term>Techniques de transfert de gènes</term>
<term>Vecteurs génétiques</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Grapevines are affected worldwide by viruses that compromise fruit yield and quality. Grapevine fanleaf virus (GFLV) causes fanleaf degeneration disease, a major threat to grapevine production. Transgenic approaches exploiting the RNA silencing machinery have proven suitable for engineering viral resistance in several crop species. However, the artificial microRNA (amiRNA)-based strategy has not yet been reported in grapevine. We developed two amiRNA precursors (pre-amiRNAs) targeting the coat protein (CP) gene of GFLV and characterised their functionality in grapevine somatic embryos. To create these pre-amiRNAs, natural pre-miR319a of Arabidopsis thaliana was modified by overlapping PCR in order to replace miR319a with two amiRNAs targeting different regions of the CP gene: amiR(CP)-1 or amiR(CP)-2. Transient expression of these two pre-amiRNA constructs was tested in grapevine somatic embryos after co-cultivation with Agrobacterium tumefaciens. Expression of amiR(CP)-1 and amiR(CP)-2 was detected in plant tissues by an endpoint stem-loop RT-PCR as early as 1 day after a 48-h co-cultivation, indicating active processing of pre-amiRNAs by the plant machinery. In parallel, GUS-sensor constructs (G(CP)-1 and G(CP)-2) were obtained by fusing the target sequence of amiR(CP)-1 or amiR(CP)-2 to the 3' terminus of the GUS gene. Co-transformation assays with GUS-sensors and the pre-amiRNA constructs provided evidence for in vivo recognition and cleavage of the 21-nt target sequence of GUS-sensors by the corresponding amiRNA. This is the first report of amiRNA ectopic expression in grapevine. The constructs we developed could be useful for engineering GFLV-resistant grapes in the future.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22427113</PMID>
<DateCompleted>
<Year>2013</Year>
<Month>05</Month>
<Day>14</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1573-9368</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>21</Volume>
<Issue>6</Issue>
<PubDate>
<Year>2012</Year>
<Month>Dec</Month>
</PubDate>
</JournalIssue>
<Title>Transgenic research</Title>
<ISOAbbreviation>Transgenic Res</ISOAbbreviation>
</Journal>
<ArticleTitle>Transient expression of artificial microRNAs targeting Grapevine fanleaf virus and evidence for RNA silencing in grapevine somatic embryos.</ArticleTitle>
<Pagination>
<MedlinePgn>1319-27</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s11248-012-9611-5</ELocationID>
<Abstract>
<AbstractText>Grapevines are affected worldwide by viruses that compromise fruit yield and quality. Grapevine fanleaf virus (GFLV) causes fanleaf degeneration disease, a major threat to grapevine production. Transgenic approaches exploiting the RNA silencing machinery have proven suitable for engineering viral resistance in several crop species. However, the artificial microRNA (amiRNA)-based strategy has not yet been reported in grapevine. We developed two amiRNA precursors (pre-amiRNAs) targeting the coat protein (CP) gene of GFLV and characterised their functionality in grapevine somatic embryos. To create these pre-amiRNAs, natural pre-miR319a of Arabidopsis thaliana was modified by overlapping PCR in order to replace miR319a with two amiRNAs targeting different regions of the CP gene: amiR(CP)-1 or amiR(CP)-2. Transient expression of these two pre-amiRNA constructs was tested in grapevine somatic embryos after co-cultivation with Agrobacterium tumefaciens. Expression of amiR(CP)-1 and amiR(CP)-2 was detected in plant tissues by an endpoint stem-loop RT-PCR as early as 1 day after a 48-h co-cultivation, indicating active processing of pre-amiRNAs by the plant machinery. In parallel, GUS-sensor constructs (G(CP)-1 and G(CP)-2) were obtained by fusing the target sequence of amiR(CP)-1 or amiR(CP)-2 to the 3' terminus of the GUS gene. Co-transformation assays with GUS-sensors and the pre-amiRNA constructs provided evidence for in vivo recognition and cleavage of the 21-nt target sequence of GUS-sensors by the corresponding amiRNA. This is the first report of amiRNA ectopic expression in grapevine. The constructs we developed could be useful for engineering GFLV-resistant grapes in the future.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Jelly</LastName>
<ForeName>Noémie S</ForeName>
<Initials>NS</Initials>
<AffiliationInfo>
<Affiliation>Laboratoire Vigne, Biotechnologies et Environnement, Université de Haute-Alsace, 33 rue de Herrlisheim, 68008 Colmar, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Schellenbaum</LastName>
<ForeName>Paul</ForeName>
<Initials>P</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Walter</LastName>
<ForeName>Bernard</ForeName>
<Initials>B</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Maillot</LastName>
<ForeName>Pascale</ForeName>
<Initials>P</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013485">Research Support, Non-U.S. Gov't</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>03</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Transgenic Res</MedlineTA>
<NlmUniqueID>9209120</NlmUniqueID>
<ISSNLinking>0962-8819</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D035683">MicroRNAs</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018749">RNA, Plant</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012367">RNA, Viral</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C485184">enhanced green fluorescent protein</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>147336-22-9</RegistryNumber>
<NameOfSubstance UI="D049452">Green Fluorescent Proteins</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.2.1.31</RegistryNumber>
<NameOfSubstance UI="D005966">Glucuronidase</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D016960" MajorTopicYN="N">Agrobacterium tumefaciens</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017360" MajorTopicYN="N">Arabidopsis</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018014" MajorTopicYN="N">Gene Transfer Techniques</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005822" MajorTopicYN="N">Genetic Vectors</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005966" MajorTopicYN="N">Glucuronidase</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D049452" MajorTopicYN="N">Green Fluorescent Proteins</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D035683" MajorTopicYN="N">MicroRNAs</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017860" MajorTopicYN="N">Nepovirus</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D034622" MajorTopicYN="Y">RNA Interference</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018749" MajorTopicYN="N">RNA, Plant</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012367" MajorTopicYN="N">RNA, Viral</DescriptorName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D027843" MajorTopicYN="N">Vitis</DescriptorName>
<QualifierName UI="Q000196" MajorTopicYN="N">embryology</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="Y">genetics</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>10</Month>
<Day>11</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>03</Month>
<Day>07</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>3</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>3</Month>
<Day>20</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2013</Year>
<Month>5</Month>
<Day>15</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22427113</ArticleId>
<ArticleId IdType="doi">10.1007/s11248-012-9611-5</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Plant Methods. 2007 Oct 12;3:12</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17931426</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2005 Nov 27;33(20):e179</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16314309</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Nov;81(22):12285-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17728227</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2006 Mar;11(3):142-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16473542</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2011 Jun;20(3):569-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20835923</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2004 Apr;13(2):165-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15198204</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2009 Apr;58(1):165-74</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19054357</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Nov;22(11):3650-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21098730</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2005 Mar;3(2):259-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17173625</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Arch Virol. 2009;154(5):899-907</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19350366</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2008 Oct;148(2):684-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18753280</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Genet. 2007 Oct;39(10):1278-84</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17893677</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>PLoS One. 2008 Mar 19;3(3):e1829</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18350165</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2005 Dec;24(11):655-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16240119</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2003 Jul;132(3):1382-90</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">12857820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2008 May;27(5):845-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18256839</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2008 Jun;27(6):1053-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18317773</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biotechnol J. 2012 Feb;10(2):150-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21895944</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Plant Sci. 2002 May;7(5):193-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11992820</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2008 Dec;27(12):1799-809</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18766346</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Transgenic Res. 2010 Feb;19(1):17-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19507046</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2006 May;18(5):1121-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16531494</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Jun;153(2):632-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20388670</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2009 Dec;151(4):1729-40</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19812183</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell. 2004 Jan 23;116(2):281-97</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">14744438</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 2006 Jun;25(6):546-53</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16408176</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Planta. 2010 Nov;232(6):1281-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20725738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Biol (Stuttg). 2011 Mar;13(2):304-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21309977</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1990 Jul;71 ( Pt 7):1433-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2374004</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2006 Nov;24(11):1420-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17057702</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 1995;33:223-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18999960</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2010 Oct;154(2):611-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20709829</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2010 Feb 12;11:109</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20152027</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2008 Nov;82(22):11084-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18768978</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol Biochem. 2009 Aug;47(8):743-52</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19406655</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Virol. 2007 Jun;81(12):6690-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17344304</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1975 Jan;26(1):33-48</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1123610</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Rep. 1995 Jun;14(9):550-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">24185595</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Gen Virol. 1991 Oct;72 ( Pt 10):2357-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">1655953</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Alsace (région administrative)</li>
<li>Grand Est</li>
</region>
<settlement>
<li>Colmar</li>
</settlement>
</list>
<tree>
<noCountry>
<name sortKey="Maillot, Pascale" sort="Maillot, Pascale" uniqKey="Maillot P" first="Pascale" last="Maillot">Pascale Maillot</name>
<name sortKey="Schellenbaum, Paul" sort="Schellenbaum, Paul" uniqKey="Schellenbaum P" first="Paul" last="Schellenbaum">Paul Schellenbaum</name>
<name sortKey="Walter, Bernard" sort="Walter, Bernard" uniqKey="Walter B" first="Bernard" last="Walter">Bernard Walter</name>
</noCountry>
<country name="France">
<region name="Grand Est">
<name sortKey="Jelly, Noemie S" sort="Jelly, Noemie S" uniqKey="Jelly N" first="Noémie S" last="Jelly">Noémie S. Jelly</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/GrapevineDiseaseV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000610 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000610 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    GrapevineDiseaseV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22427113
   |texte=   Transient expression of artificial microRNAs targeting Grapevine fanleaf virus and evidence for RNA silencing in grapevine somatic embryos.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22427113" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a GrapevineDiseaseV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 16:11:34 2020. Site generation: Wed Nov 18 16:12:50 2020